Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Exp Biol ; 2002 Aug; 40(8): 941-4
Article in English | IMSEAR | ID: sea-61402

ABSTRACT

Three sulphur containing compounds, carbon disulphide, dimethyl disulphide and dimethyl sulphide were bioassayed for preference after admixing them in cereal base as ready bait block for use against commensal rat, R. rattus (wild type) in four way choice chamber system. Rat preference for different baits was also studied with automatic recording animal activity meter. Rats exhibited attractancy to the baits at 0.005% concentration of all the three compounds while at 0.01% concentration they have showed repellency. Dimethyl sulphide at 0.005% concentration showed better attractancy towards both sexes of rat.


Subject(s)
Animals , Carbon Disulfide/pharmacology , Edible Grain , Disulfides/pharmacology , Female , Male , Movement , Odorants , Rats , Rodent Control , Rodenticides/pharmacology , Sulfides/pharmacology
2.
Yonsei Medical Journal ; : 265-272, 1999.
Article in English | WPRIM | ID: wpr-150897

ABSTRACT

The objectives of this study were to develop optimal analytic methods for detecting urinary 2-thiothiazolidine-4-carboxylic acid (TTCA) and thiocarbamide simultaneously and to evaluate the usefulness of these metabolites to a biological exposure index (BEI) for carbon disulfide (CS2) exposure. For this experiment, synthesized TTCA and thiocarbamide were used. The synthesized TTCA was identified by infrared spectrophotometer, nuclear magnetic resonance spectrometer and thin layer chromatography. The recovery rates of both metabolites were calculated to find the optimum analytical method. The amounts of urinary TTCA and thiocarbamide were measured by using an ultraviolet detector connected to high performance liquid chromatography (HPLC) after the administration of CS2 (350, 700 mg/kg) into Sprague-Dawley rats intraperitoneally. The maximum absorbance wave lengths for TTCA and thiocarbamide were 272 and 236 nm, respectively. Ethyl acetate extraction with NaCl as a salting-out reagent was used as a simultaneous extraction method for these metabolites. HPLC conditions for these metabolites included using a NH2 column, 50 mM KH2PO4: acetonitrile (85:15) and pH 3. Excreted amounts of urinary TTCA and thiocarbamide were increased significantly following CS2 administration. TTCA, which was already adopted as a BEI for CS2 by the American Conference of Governmental Industrial Hygienists (ACGIH), seems to be a more useful BEI for CS2 exposure than thiocarbamide. However further studies are needed to increase analytical efficiency before thiocarbamide can be adopted as a BEI and to apply this analytic method for simultaneous analysis of these metabolites in workers exposed to CS2.


Subject(s)
Rats , Animals , Carbon Disulfide/pharmacology , Environmental Exposure , Rats, Sprague-Dawley , Thiazoles/urine , Thiourea/urine , Urea/urine
SELECTION OF CITATIONS
SEARCH DETAIL